
64

Full Proofs for “Logarithm and Program Testing”

KUEN-BANG HOU (FAVONIA), University of Minnesota, USA
ZHUYANG WANG, University of Minnesota, USA

This is part of the supplementary material for the paper “Logarithm and Program Testing”. It contains the full
proofs of a variant of Lemma 3.2 and Theorem 4.1 from the main article.

1 A VARIANT OF LEMMA 3.2 FROM THE MAIN ARTICLE
This variant shows that the lack of strict positivity in the codomain type can also necessitate the
testing of the empty type.

Lemma 1.1 (no single type, an alternative to Lemma 3.2 from the main article). For any
type · ⊢ 𝜏 , there exist two functions 𝑓 and 𝑔

·; · ⊢poly 𝑓 : ∀𝑎.(𝑎 + 1) → (𝑎 + 𝑎) + ((𝑎 → 0) → (1 + 1))
·; · ⊢poly𝑔 : ∀𝑎.(𝑎 + 1) → (𝑎 + 𝑎) + ((𝑎 → 0) → (1 + 1))

such that 𝑓 [𝜏] � 𝑔[𝜏] but 𝑓 � 𝑔. That is, 𝜏 cannot distinguish them.

Proof. Consider these three contextually distinct functions:

𝑓 ≔ Λ𝑎._(𝑥 :𝑎 + 1).case(𝑥 ;𝑦.inl(inl(𝑦)); ._(:𝑎 → 0).inl(★))
𝑔 ≔ Λ𝑎._(𝑥 :𝑎 + 1).case(𝑥 ;𝑦.inl(inl(𝑦)); ._(:𝑎 → 0).inr(★))
ℎ ≔ Λ𝑎._(𝑥 :𝑎 + 1).case(𝑥 ;𝑦.inl(inr(𝑦)); ._(:𝑎 → 0).inr(★))

On the one hand, if 𝜏 is non-empty, 𝑓 [𝜏] and 𝑔[𝜏] are contextually equivalent, because there is no
term of type (𝜏 → 0). On the other hand, if 𝜏 is empty, 𝑔[𝜏] and ℎ[𝜏] are contextually equivalent,
because they always output _(:𝜏 → 0).inr(★). In either case, there is a pair of indistinguishable
functions for every 𝜏 . □

2 LOGICAL RELATIONS, FIXED POINTS, AND PREFIXED POINTS
Definition 2.1 (admissible relations). Let R be a relation between closed terms of closed types 𝜏1

and 𝜏2. We write R : 𝜏1 ↔ 𝜏2 if it respects observational equivalence on both sides.

Definition 2.2 (functors). Let 𝐹 (𝑎) be a type expression parametrized by 𝑎. We say 𝐹 is a positive
functor if 𝑎 only appears in positive positions, a negative functior if 𝑎 only appears in negative
positions, and a strictly positive functor if 𝑎 only appears in strictly positive positions.

Definition 2.3 (logical relation and prefixed points). We simultaneously define the prefixed points
and logical relations by induction on the structure of the functor 𝐹 and the type 𝜏 :

Authors’ addresses: Kuen-Bang Hou (Favonia), Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, Minnesota, 55455, USA, kbh@umn.edu; Zhuyang Wang, Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, Minnesota, 55455, USA, wang9163@umn.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2475-1421/2022/1-ART64
https://doi.org/10.1145/3498726

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

HTTPS://ORCID.ORG/0000-0002-2310-3673
HTTPS://ORCID.ORG/0000-0001-9347-2151
https://orcid.org/0000-0002-2310-3673
https://orcid.org/0000-0001-9347-2151
https://doi.org/10.1145/3498726

64:2 Kuen-Bang Hou (Favonia) and Zhuyang Wang

Prefixed Points: For any kinding context Δ, any strictly positve functor 𝐹 such that Δ, 𝑏 ⊢ 𝐹 (𝑏),
two substitutions · ⊢ 𝛿 : Δ and · ⊢ 𝛿 ′ : Δ, and a family of relations [indexed by Δ such that
[(𝑎) : 𝛿 (𝑎) ↔ 𝛿 ′(𝑎), a relationR : 𝛿 (`𝑏.𝐹 (𝑏)) ↔ 𝛿 ′(`𝑏.𝐹 (𝑏)) is a prefixed point of the functor
𝐹 iff for any elements 𝑒1 and 𝑒2 such that · ⊢ 𝑒1 : 𝛿 (𝐹 (`𝑏.𝐹 (𝑏))) and · ⊢ 𝑒2 : 𝛿 ′(𝐹 (`𝑏.𝐹 (𝑏))),

𝑒1 ∼𝐹 (𝑏) 𝑒2 [[;𝑏 ↦→ R] =⇒ R(roll𝑏.𝛿 (𝐹 (𝑏)) (𝑒1), roll𝑏.𝛿′ (𝐹 (𝑏)) (𝑒2)) .
Logical Relations For any kinding context Δ, any 𝜏 such that Δ ⊢ 𝜏 , two substitutions · ⊢ 𝛿 : Δ

and · ⊢ 𝛿 ′ : Δ, and a family of relations [indexed by Δ such that [(𝑎) : 𝛿 (𝑎) ↔ 𝛿 ′(𝑎), the
logical relation − ∼𝜏 − [[] between elements 𝑒1 and 𝑒2 such that · ⊢ 𝑒1 : 𝛿 (𝜏) and · ⊢ 𝑒2 : 𝛿 ′(𝜏)
is defined as follows:
• 𝑒1 ∼𝑎 𝑒2 [[] iff [(𝑎) (𝑒1, 𝑒2).
• 𝑒1 ∼0 𝑒2 [[] never holds.
• 𝑒1 ∼𝜏1+𝜏2 𝑒2 [[] iff
– 𝑒1 evalautes to inl(𝑒 ′1) and 𝑒2 evalautes to inl(𝑒 ′2) and 𝑒 ′1 ∼𝜏1 𝑒

′
2 [[]; or

– 𝑒1 evalautes to inr(𝑒 ′1) and 𝑒2 evalautes to inr(𝑒 ′2) and 𝑒 ′1 ∼𝜏2 𝑒
′
2 [[].

• 𝑒1 ∼1 𝑒2 [[] always holds.
• 𝑒1 ∼𝜏1×𝜏2 𝑒2 [[] iff fst(𝑒1) ∼𝜏1 fst(𝑒2) [[] and snd(𝑒1) ∼𝜏2 snd(𝑒2) [[].
• 𝑒1 ∼𝜏1→𝜏2 𝑒2 [[] iff for all 𝑒 ′1, 𝑒 ′2 such that 𝑒 ′1 ∼𝜏1 𝑒

′
2 [[], 𝑒1 (𝑒 ′1) ∼𝜏2 𝑒2 (𝑒 ′2) [[].

• 𝑒1 ∼`𝑏.𝐹 (𝑏) 𝑒2 [[] iff R(𝑒1, 𝑒2) holds for any prefixed point R of the functor 𝐹 .

Now that we have the logical relation defined, we can define the fixed points for a strictly positive
functor as well:

Definition 2.4 (fixed points). For any kinding context Δ, any strictly positive functor 𝐹 such that
Δ, 𝑏 ⊢ 𝐹 (𝑏), two substitutions · ⊢ 𝛿 : Δ and · ⊢ 𝛿 ′ : Δ, and a family of relations [indexed by Δ such
that [(𝑎) : 𝛿 (𝑎) ↔ 𝛿 ′(𝑎), a relation R : 𝛿 (`𝑏.𝐹 (𝑏)) ↔ 𝛿 ′(`𝑏.𝐹 (𝑏)) is a fixed point of the functor 𝐹
iff for any elements 𝑒1 and 𝑒2 such that · ⊢ 𝑒1 : 𝛿 (𝐹 (`𝑏.𝐹 (𝑏))) and · ⊢ 𝑒2 : 𝛿 ′(𝐹 (`𝑏.𝐹 (𝑏))),

𝑒1 ∼𝐹 (𝑏) 𝑒2 [[;𝑏 ↦→ R] ⇐⇒ R(roll𝑏.𝛿 (𝐹 (𝑏)) (𝑒1), roll𝑏.𝛿′ (𝐹 (𝑏)) (𝑒2)) .

By the Knaster–Tarski theorem [Tarski 1955] and the positivity of 𝑎 in the functor 𝐹 , the least
prefixed point and the least fixed point always exist and coincide. So the logical relation of type
`𝑏.𝐹 (𝑏) can also be defined as follows:

• 𝑒1 ∼`𝑏.𝐹 (𝑏) 𝑒2 [[] iff R(𝑒1, 𝑒2) holds for any fixed point R of the functor 𝐹 .

Lemma 2.5. Logical relation is admissible.

Lemma 2.6 (Compositionality). For any types Δ, 𝑎 ⊢ 𝜏 and Δ ⊢ 𝜏1, two type substitutions · ⊢ 𝛿 : Δ
and · ⊢ 𝛿 ′ : Δ, a family of relations [: 𝛿 ↔ 𝛿 ′,

𝑒 ∼𝜏 [𝜏1/𝑎] 𝑒
′ [[] iff 𝑒 ∼𝜏 𝑒

′ [[, 𝑎 ↦→ − ∼𝜏1 − [[]] .

Lemma 2.7 (Parametricity). If ·; · ⊢ 𝑒 : 𝜏 then 𝑒 ∼𝜏 𝑒 [].

Lemma 2.8. Logical equivalence and observational equivalence coincide.

Lemma 2.9. If we have a type 𝑎 ⊢ 𝜏 and two elements · ⊢poly 𝑒 : ∀𝑎.𝜏 and · ⊢poly 𝑒 ′ : ∀𝑎.𝜏 , then
𝑒 � 𝑒 ′ iff 𝑒 [𝜏1] � 𝑒 ′[𝜏1] for any closed type 𝜏1.

3 MAIN THEOREM STATEMENT
Our goal is to prove the following main theorem.

Theorem 3.1 (correctness with indexes, Theorem 4.1 from the main article). Suppose we
have

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

Full Proofs for “Logarithm and Program Testing” 64:3

• An ambient kinding context Δ; and
• A type substitution 𝛿 such that · ⊢ 𝛿 : Δ, which applies to all open types in the theorem; and
• Two type expressions 𝛼 (𝑎) and 𝐻 (𝑎) such that

Δ, 𝑎 ⊢ 𝛼 (𝑎) and 𝑎 ∈++ log𝑎 (𝛼 (𝑎))
Δ, 𝑎 ⊢ 𝐻 (𝑎) and 𝑎 ∈+ 𝐻 (𝑎)

• Two functions 𝑓 and 𝑔 such that

·; · ⊢poly 𝑓 : 𝛿 (∀𝑎.𝛼 (𝑎) → 𝐻 (𝑎))
·; · ⊢poly𝑔 : 𝛿 (∀𝑎.𝛼 (𝑎) → 𝐻 (𝑎))

Then, 𝑓 � 𝑔 if and only if the following two conditions hold:
(1) 𝑓 [0] � 𝑔[0]
(2) 𝑓 [𝛿 (𝑎∗)] (𝛿{𝛼 (𝑎) ↑𝑎}(𝑒−)) � 𝑔[𝛿 (𝑎∗)] (𝛿{𝛼 (𝑎) ↑𝑎}(𝑒−))

for every 𝑒− such that ·; · ⊢ 𝑒− : 𝛿 (𝛼− (𝑎∗))

The “only if” direction is straightforward, and the interesting direction is from the two conditions
to the contextual equivalence. It means the equivalence of any general argument is witnessed by at
least one skeleton 𝑒−. The proof involves two steps:
(1) Focus on one function instead of two functions.

We can compare two functions with a reduced domain because a polymorphic function is
completely determined by its selected instances. If both functions are determined by their
selected instances, and their selected instances agree, then they themselves agree as well.
Thus, we can focus on why a polymorphic function is determined by its own instances.

(2) Show that composition of skeletonization, refilling, and selection is identity.
The insight is that every general input of type 𝛼 (𝑎) is related to a specialized input 𝛼 (𝑎∗)
where 𝑎-elements and indexes are related by some left-unique relation R. Given a general
input 𝑒 , the related specialized input may be computed by getting its skeleton 𝑒− and then
refilling it with indexes to obtain 𝑒∗. The core lemma is to establish an admissible relation
between 𝑒 and 𝑒∗. For example, consider the general input [𝑒0, 𝑒1, . . . , 𝑒𝑛−1] of type list(𝑎). Its
skeleton 𝑒− would be [★,★, . . . ,★] and the corresponding specialized input with the indexes
would be [0, 1, . . . , 𝑛−1]. The relation R would relate 𝑒 with 𝑖 if and only if 𝑒𝑖 � 𝑒 . The entire
process may be summarized by the following diagram:

𝑒 = [𝑒0, 𝑒1, . . . , 𝑒𝑛−1]
general inputs

𝑒∗ = [0, 1, . . . , 𝑛−1]
specialized inputs

𝑒− = [★,★, . . . ,★]
skeletons

selection
specialization

skeletonization (Section 4) refilling

The following lemma (Lemma 3.2) states that the general behavior of a polymorphic function is
indeed determined by some of its instances. For technical reasons, it only covers the cases where
the 𝑎 is instantiated with non-empty types, explaining why we had to consider the 0 thus the
case-splitting in the main theorem. Note that the lemma uses the auxiliary functions defined in
Sections 4 (skeletonization) and 5 (selection) to precisely write down 𝑒− (the skeleton), 𝑒∗ (the
specialized input), and how the specialized input 𝑒∗ is related to the general input 𝑒 .

Lemma 3.2. Suppose we have the following data:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

64:4 Kuen-Bang Hou (Favonia) and Zhuyang Wang

• A kinding context Δ.
• A type substitution 𝛿 such that · ⊢ 𝛿 : Δ.
• The distinguished type variable 𝑎.
• A type expression 𝛼 (𝑎) such that Δ, 𝑎 ⊢ 𝛼 (𝑎) and 𝑎 ∈++ log𝑎 (𝛼 (𝑎)).
• A type expression 𝐻 (𝑎) such that Δ, 𝑎 ⊢ 𝐻 (𝑎) and 𝑎 ∈+ 𝐻 (𝑎).
• A non-empty, closed type 𝜏 that is representing the general type to instantiate the type 𝑎.
• An element 𝑒 witnessing the non-emptiness of 𝜏 . That is, ·; · ⊢ 𝑒 : 𝜏 .
• An element 𝑒 of type ·; · ⊢ 𝑒 : 𝛿 (𝛼 (𝜏)) as the general input.

Let type 𝑎∗ be `𝑎. log𝑎 (𝛼 (𝑎)) and the selection function ·; · ⊢ 𝑠 : 𝛿 (𝑎∗) → 𝜏 be

𝑠 ≔ _(𝑥 :𝛿 (𝑎∗)) .fold𝜏
𝑎.𝛿 (log𝑎 (𝛼 (𝑎)))

(𝑥 ;𝑦.𝛿{𝛼 (𝑎) @𝑎 [𝑎 ↦→ 𝜏]; ∅}(𝑒; 𝑒;𝑦))

Define 𝑒− (the skeleton) and 𝑒∗ (the skeleton filled with indexes) as

𝑒− ≔ 𝛿{𝛼 (𝑎) ↓∅𝑎 𝑎∗;𝜏 ; ∅}(𝑠; 𝑒)
𝑒∗ ≔ 𝛿{𝛼 (𝑎) ↑∅𝑎 [𝑎 ↦→ 𝑎∗]; ∅}(roll𝑎.𝛿 (log𝑎 (𝛼 (𝑎))) ; 𝑒

−)

(These elements would satisfy the typing judgments ·; · ⊢ 𝑒− : 𝛿 (𝛼− (𝑎∗)) and ·; · ⊢ 𝑒∗ : 𝛿 (𝛼 (𝑎∗)).)
Given all these data, for any polymorphic function 𝑓 such that

·; · ⊢poly 𝑓 : 𝛿 (∀𝑎.𝛼 (𝑎) → 𝐻 (𝑎))

we can relate the behavior of 𝑓 on general inputs to that on specialized ones:

𝑓 [𝛿 (𝑎∗)] (𝑒∗) ∼𝛿 (𝐻 (𝑎)) 𝑓 [𝜏] (𝑒) [𝑎 ↦→ 𝑠]

We demonstrate that the main theorem is implied by the above, justifying the first step of the
development.

Proof of Theorem 3.1 from Lemma 3.2. The “only if” direction trivially follows the definition
of contextual equivalence. For the more interesting “if” direction, by Lemma 2.9, it is sufficient to
prove that for any closed type 𝜏 , 𝑓 [𝜏] � 𝑔[𝜏].

By Lemma 6.1, either 𝜏 is empty, or 𝜏 is not empty and we have a closed term 𝑒 of type 𝜏 . If 𝜏 is
empty, the equivalence is witnessed by the first condition 𝑓 [0] � 𝑔[0]. If 𝜏 is non-empty, we only
need to prove that for any element 𝑒 such that ·; · ⊢ 𝑒 : 𝛿 (𝛼 (𝜏)),

𝑓 [𝜏] (𝑒) � 𝑔[𝜏] (𝑒)

By the skeleton 𝑒− and the selection function 𝑠 used in Lemma 3.2, we have

𝑓 [𝛿 (𝑎∗)] (𝛿{𝛼 (𝑎) ↑𝑎}(𝑒−)) ∼𝛿 (𝐻 (𝑎)) 𝑓 [𝜏] (𝑒) [𝑎 ↦→ 𝑠]
𝑔[𝛿 (𝑎∗)] (𝛿{𝛼 (𝑎) ↑𝑎}(𝑒−)) ∼𝛿 (𝐻 (𝑎)) 𝑔[𝜏] (𝑒) [𝑎 ↦→ 𝑠] .

The second assumption states that the elements on the left-hand side are contextually equivalent.
We wish to prove that those on the right-hand side are equivalent as well. Because 𝑎 ∈+ 𝛿 (𝐻 (𝑎))
and 𝑠 is a function, by Lemma 8.1 we know that the relation

− ∼𝛿 (𝐻 (𝑎)) − [𝑎 ↦→ 𝑠]

is also a function. Therefore, the equivalence on the left-hand side implies that on the right-hand
side. That is,

𝑓 [𝜏] (𝑒) � 𝑔[𝜏] (𝑒)
□

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

Full Proofs for “Logarithm and Program Testing” 64:5

{𝛼 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b} : (𝑎∗ → 𝜏) → b (𝛼 (𝜏)) → b (𝛼− (𝑎∗))

Auxiliary skeletonization function.

{𝑎 ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; 𝑒) ≔ ★

{𝑏 ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; 𝑒) ≔ 𝑒 (𝑎 ≠ 𝑏)
{0 ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; 𝑒) ≔ 𝑒

{𝛼1 (𝑎) + 𝛼2 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; 𝑒) ≔ case(𝑒;𝑥 .inl({𝛼1 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠;𝑥));𝑥 .inr({𝛼2 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠;𝑥)))
{1 ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; 𝑒) ≔ 𝑒

{𝛼1 (𝑎) × 𝛼2 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; 𝑒) ≔ ⟨{𝛼1 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; fst(𝑒)); {𝛼2 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; snd(𝑒))⟩
{𝛼1 (𝑎) → 𝛼2 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; 𝑒) ≔ _(𝑥 :b (𝛼1 (𝑎∗))) .{𝛼2 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; 𝑒 (⟨𝑎+ .b (𝛼1 (𝑎))⟩(𝑠;𝑥)))

{`𝑏.𝛼1 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; 𝑒) ≔ fold
`𝑏.b (𝛼−

1 (𝑎∗))
𝑏.b (𝛼1 (𝜏)) (𝑒;𝑥 .roll𝑏.b (𝛼−

1 (𝑎∗)) ({𝛼1 (𝑎) ↓
Ξ̂
𝑎 𝑎∗;𝜏 ; b̂}(𝑠;𝑥)))

where Ξ̂ ≔ Ξ, 𝑏

b̂ ≔ b, 𝑏 ↦→ `𝑏.b (𝛼1− (𝑎∗))

Fig. 1. The skeletonization function

The rest of the paper is organized as follows: Sections 4 and 5 define the skeletonization and
selection functions used in Lemma 3.2. Section 6 elaborates on the procedure to construct an element
of a non-empty type that is used in the proof of the main theorem using Lemma 3.2. Section 7 proves
some basic lemmas about functoriality that we will take for granted in other sections. Section 8
shows a sufficient condition for a logical relation to be a function. Finally, Section 9 is devoted to
the proof of the Lemma 3.2.

4 SKELETONIZATION
Skeletonization is the transformation from the general input 𝑒 to the skeleton 𝑒−. The function is
formally written as {𝛼 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b} where the symbols have the same meanings as in Lemma 3.2;
see Figure 1 for its definition. For brevity, we write

𝛿{𝛼 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; 𝑒)
for

𝛿 ({𝛼 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b})(𝑠; 𝑒)

5 SELECTION FUNCTIONS
The selection function maps indexes in the specialized 𝑒∗ back to the 𝑎-elements in the general input
𝑒 . It is the key to relate the general input 𝑒 and the specialized input 𝑒∗ in Lemma 3.2. The function
is formally written as {𝜏 @𝜓

𝑎 𝜎 ; 𝜌} where the symbols have the same meanings as in Lemma 3.2;
see Figure 2 for its definition. For brevity, we write

𝛿{𝜏 @𝜓
𝑎 𝜎 ; 𝜌}(𝑒; 𝑒; 𝑡)

for
𝛿 ({𝜏 @𝜓

𝑎 𝜎 ; 𝜌})(𝑒; 𝑒; 𝑡)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

64:6 Kuen-Bang Hou (Favonia) and Zhuyang Wang

¥𝜎𝜓 ;𝜌
𝑎

Substitutions parametrized by 𝑎 to represent the input to the select function.

¥𝜎𝜓 ;𝜌
𝑎 (𝑏) ≔ 𝜎 (𝑏) (𝑏 ∉ 𝜓)

¥𝜎𝜓 ;𝜌
𝑎 (𝑏) ≔ 𝜎 (𝜌 (𝜓 (𝑏)) → 𝑎) (𝑏 ∈ 𝜓)

{𝜏 @𝜓
𝑎 𝜎 ; 𝜌} : 𝜎 (𝑎) → ¥𝜎𝜓 ;𝜌

𝑎 (𝜏) → 𝜎 (𝜌 (log𝜓𝑎 (𝜏))) → 𝜎 (𝑎)

Auxiliary selector.

{𝑎 @𝜓
𝑎 𝜎 ; 𝜌}(𝑒; 𝑒; 𝑡) ≔ 𝑒

{𝑏 @𝜓
𝑎 𝜎 ; 𝜌}(𝑒; 𝑒; 𝑡) ≔ 𝑒 (𝑡) (𝑎 ≠ 𝑏 and 𝑏 ∈ 𝜓)

{𝑏 @𝜓
𝑎 𝜎 ; 𝜌}(𝑒; 𝑒; 𝑡) ≔ 𝑒 (𝑎 ≠ 𝑏 and 𝑏 ∉ 𝜓)

{0 @𝜓
𝑎 𝜎 ; 𝜌}(𝑒; 𝑒; 𝑡) ≔ 𝑒

{𝜏1 + 𝜏2 @𝜓
𝑎 𝜎 ; 𝜌}(𝑒; 𝑒; 𝑡) ≔ case(𝑡 ; 𝑡 .case(𝑒;𝑥 .{𝜏1 @𝜓

𝑎 𝜎 ; 𝜌}(𝑒;𝑥 ; 𝑡); .𝑒);

𝑡 .case(𝑒; .𝑒;𝑥 .{𝜏2 @𝜓
𝑎 𝜎 ; 𝜌}(𝑒;𝑥 ; 𝑡)))

{1 @𝜓
𝑎 𝜎 ; 𝜌}(𝑒; 𝑒; 𝑡) ≔ 𝑒

{𝜏1 × 𝜏2 @𝜓
𝑎 𝜎 ; 𝜌}(𝑒; 𝑒; 𝑡) ≔ case(𝑡 ; 𝑡 .{𝜏1 @𝜓

𝑎 𝜎 ; 𝜌}(𝑒; fst(𝑒); 𝑡);

𝑡 .{𝜏2 @𝜓
𝑎 𝜎 ; 𝜌}(𝑒; snd(𝑒); 𝑡))

{𝜏1 → 𝜏2 @𝜓
𝑎 𝜎 ; 𝜌}(𝑒; 𝑒; 𝑡) ≔ {𝜏2 @𝜓

𝑎 𝜎 ; 𝜌}(𝑒; 𝑒 (fst(𝑡)); snd(𝑡))

{`𝑏.𝜏 @𝜓
𝑎 𝜎 ; 𝜌}(𝑒; 𝑒; 𝑡) ≔ (fold𝜎 (𝜌 (𝑏

′)→𝑎)
𝑏.𝜎 (𝜏) (𝑒;𝑥 ._𝑡 .{𝜏 @𝜓

𝑎 �̂� ; 𝜌}(𝑒;𝑥 ; unroll(𝑡)))) (𝑡)

where 𝜓 ≔ 𝜓,𝑏 ↦→ 𝑏 ′

�̂� ≔ 𝜎,𝑏 ↦→ 𝜎 (`𝑏.𝜏)

𝜌 ≔ 𝜌, 𝑏 ′ ↦→ 𝜌 (log𝜓𝑎 (`𝑏.𝜏))

Fig. 2. The selection function

6 DECIDABLE EMPTINESS
In the proof of Theorem 3.1 from Lemma 3.2, we need a concrete term 𝑒 of a non-empty type. The
following is the lemma that justifies such dichotomy even in the constructive setting. The formal
emptiness and non-emptiness are written “𝜏 □” (“𝜏 is empty”) and “𝜏 ⊡” (“𝜏 is non-empty”); see
Figure 3. The formal definitions are extended to cover open types to better handle inductive types;
emptiness of open types is defined in terms of their emptiness when all the type variables are
instantiated with the empty type.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

Full Proofs for “Logarithm and Program Testing” 64:7

𝜏 □ and 𝜏 ⊡

“𝜏 is empty” and “𝜏 is non-empty”

𝑎 □ 0 □ 1 ⊡

𝜏1 □

𝜏1 × 𝜏2 □

𝜏2 □

𝜏1 × 𝜏2 □

𝜏1 ⊡ 𝜏2 ⊡

𝜏1 × 𝜏2 ⊡

𝜏1 ⊡

𝜏1 + 𝜏2 ⊡
𝜏2 ⊡

𝜏1 + 𝜏2 ⊡

𝜏1 □ 𝜏2 □

𝜏1 + 𝜏2 □
𝜏1 □

𝜏1 → 𝜏2 ⊡

𝜏2 ⊡

𝜏1 → 𝜏2 ⊡

𝜏1 ⊡ 𝜏2 □

𝜏1 → 𝜏2 □

𝜏 □

`𝑎.𝜏 □

𝜏 ⊡

`𝑎.𝜏 ⊡

Fig. 3. Emptiness of types

Lemma 6.1. For any kinding context Δ, any type 𝜏 such that Δ ⊢ 𝜏 , and any type substitution 𝛿 such
that · ⊢ 𝛿 : Δ and 𝛿 (𝑎) = 0 for any type variable 𝑎 ∈ Δ, exactly one of the following two statements
holds:

• 𝜏 ⊡ and there is an element 𝑒 of type ·; · ⊢ 𝑒 : 𝛿 (𝜏) can be constructed.
• 𝜏 □ and there is an element 𝑒 of type ·; · ⊢ 𝑒 : 𝛿 (𝜏) → 0 can be constructed.

Proof. If both statements hold, then we have a closed term of the empty type 0. Thus, at most
one of the statements is true. We prove that at least one of the statements holds by induction on 𝜏 .

• 𝜏 = 𝑎.
𝑎 □ and we can pick 𝑒 = id0.

• 𝜏 = 0.
0 □ and we can pick 𝑒 = id0.

• 𝜏 = 1.
1 ⊡ and we can pick 𝑒 = ★.

• 𝜏 = 𝜏1 + 𝜏2.
If 𝜏1 ⊡ and there is an element 𝑒1 such that ·; · ⊢ 𝑒1 : 𝛿 (𝜏1), then 𝜏1 + 𝜏2 ⊡, and we can pick
𝑒 = inl(𝑒1). If 𝜏2 ⊡ and there is an element 𝑒2 such that ·; · ⊢ 𝑒2 : 𝛿 (𝜏2), then 𝜏1 + 𝜏2 ⊡, and
we can pick 𝑒 = inr(𝑒2). Otherwise, 𝜏1 □ and 𝜏2 □ and there are elements 𝑒1 and 𝑒2 such that
·; · ⊢ 𝑒1 : 𝛿 (𝜏1) → 0 and ·; · ⊢ 𝑒2 : 𝛿 (𝜏2) → 0. In this case, 𝜏1 + 𝜏2 □, and we can pick

𝑒 = _(𝑧:𝛿 (𝜏1 + 𝜏2)) .case(𝑧;𝑥 .𝑒1 (𝑥);𝑦.𝑒2 (𝑦)).

• 𝜏 = 𝜏1 × 𝜏2.
If 𝜏1 □ and there is an element 𝑒1 such that ·; · ⊢ 𝑒1 : 𝛿 (𝜏1) → 0, then 𝜏1×𝜏2 □ and we can pick
𝑒 = _(𝑥 :𝛿 (𝜏1×𝜏2)) .𝑒1 (fst(𝑥)). If 𝜏2 □ and there is an element 𝑒2 such that ·; · ⊢ 𝑒2 : 𝛿 (𝜏2) → 0,
then 𝜏1 × 𝜏2 □ and we can pick 𝑒 = _(𝑥 :𝛿 (𝜏1 × 𝜏2)) .𝑒2 (snd(𝑥)). Otherwise, 𝜏1 ⊡ and 𝜏2 ⊡ and
there are elements 𝑒1 and 𝑒2 such that ·; · ⊢ 𝑒1 : 𝛿 (𝜏1) and ·; · ⊢ 𝑒2 : 𝛿 (𝜏2). In this case, 𝜏1 ×𝜏2 ⊡
and we can pick 𝑒 = ⟨𝑒1; 𝑒2⟩.

• 𝜏 = 𝜏1 → 𝜏2.
If 𝜏1 □ and there is an element 𝑒1 such that ·; · ⊢ 𝑒1 : 𝛿 (𝜏1) → 0, then 𝜏1 → 𝜏2 ⊡ and we can
pick 𝑒 = _(𝑥 :𝛿 (𝜏1)) .abort(𝑒1 (𝑥)). If 𝜏2 ⊡ and there is an element 𝑒2 such that ·; · ⊢ 𝑒2 : 𝛿 (𝜏2),
then 𝜏1 → 𝜏2 ⊡ and we can pick 𝑒 = _(𝑥 :𝛿 (𝜏1)) .𝑒2. Otherwise, 𝜏1 ⊡ and 𝜏2 □ and there are two
elements 𝑒1 and 𝑒2 such that ·; · ⊢ 𝑒1 : 𝛿 (𝜏1) and ·; · ⊢ 𝑒2 : 𝛿 (𝜏2) → 0. In this case, 𝜏1 → 𝜏2 □
and we can pick 𝑒 = _(𝑓 :𝛿 (𝜏1→𝜏2)) .𝑒2 (𝑓 (𝑒1)).

• 𝜏 = `𝑎.𝜏1.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

64:8 Kuen-Bang Hou (Favonia) and Zhuyang Wang

Let the substitution 𝛿 ′ be 𝛿, 𝑎 ↦→ 0. If 𝜏1 □ and there is an element 𝑒1 such that ·; · ⊢ 𝑒1 :
𝛿 ′(𝜏1) → 0, then `𝑎.𝜏1 □ and we can pick

𝑒 = _(𝑥 :𝛿 (`𝑎.𝜏1)).fold0
𝑎.𝛿 (𝜏1) (𝑥 ;𝑦.𝑒1 (𝑦)) .

If 𝜏1 ⊡ and there is an element 𝑒1 sich that ·; · ⊢ 𝑒1 : 𝛿 ′(𝜏1), then `𝑎.𝜏1 ⊡ and we can pick
𝑒 = roll𝑎.𝛿 (𝜏1) (⟨𝑎+.𝛿 (𝜏1)⟩(abort; 𝑒1)).

□

7 POLARITIES AND FUNCTORIALITY
Functoriality plays an important role in our proofs. It appears in handling 𝑎-elements in the result
type 𝐻 (𝑎), mapping indexes back to their corresponding 𝑎-elements in the general input 𝑒 , and also
inductive types. First of all, functoriality satisfies the following basic properties: compositionality of
functions applied to the same type variable and commutativity of functions applied to distinct type
variables.

Lemma 7.1 (composition). Given these data:
• A kinding context Δ.
• A type substitution 𝛿 such that · ⊢ 𝛿 : Δ.
• The distinguished type variable 𝑎 ∉ Δ.
• Four type expressions 𝛼 (𝑎), 𝜏1, 𝜏2, and 𝜏3:
(1) Δ, 𝑎 ⊢ 𝛼 (𝑎)
(2) Δ ⊢ 𝜏1
(3) Δ ⊢ 𝜏2
(4) Δ ⊢ 𝜏3
• An element 𝑒 such that Δ; · ⊢ 𝑒 : 𝛼 (𝜏1).
• Two functions 𝑓 and 𝑔 such that Δ; · ⊢ 𝑓 : 𝜏1 → 𝜏2 and Δ; · ⊢ 𝑔 : 𝜏2 → 𝜏3.

We have the following:

𝛿 (⟨𝑎+.𝛼 (𝑎)⟩(𝑔; ⟨𝑎+.𝛼 (𝑎)⟩(𝑓 ; 𝑒))) ∼𝛿 (𝛼 (𝜏3)) 𝛿 (⟨𝑎+ .𝛼 (𝑎)⟩(𝑔 ◦ 𝑓 ; 𝑒)) []

Proof. By simultaneous induction on the type expression 𝛼 (𝑎) for both positive and negative
polarities. (The lemma only states the results for the positive polarity, but its proof needs both
polarities due to domains of function types being contravariant.) □

Lemma 7.2 (commutativity). Given these data:
• A kinding context Δ.
• A type substitution 𝛿 such that · ⊢ 𝛿 : Δ,
• Two different distinguished type variables 𝑎 and 𝑏 where 𝑎 ≠ 𝑏, 𝑎 ∉ Δ, 𝑏 ∉ Δ.
• Five type expressions 𝛼 (𝑎, 𝑏), 𝜏1, 𝜏2, 𝜏3, and 𝜏4 such that
(1) Δ, 𝑎, 𝑏 ⊢ 𝛼 (𝑎, 𝑏).
(2) Δ ⊢ 𝜏1.
(3) Δ ⊢ 𝜏2.
(4) Δ ⊢ 𝜏3.
(5) Δ ⊢ 𝜏4.
• An element 𝑒 such that Δ; · ⊢ 𝑒 : 𝛼 (𝜏1, 𝜏3).
• Two functions 𝑓𝑎 and 𝑓𝑏 such that Δ; · ⊢ 𝑓𝑎 : 𝜏1 → 𝜏2 and Δ; · ⊢ 𝑓𝑏 : 𝜏3 → 𝜏4.

We have the following:

𝛿 (⟨𝑏+ .𝛼 (𝑎, 𝑏)⟩(𝑓𝑏 ; ⟨𝑎+ .𝛼 (𝑎, 𝑏)⟩(𝑓𝑎 ; 𝑒))) ∼𝛿 (𝛼 (𝜏2,𝜏4)) 𝛿 (⟨𝑎+.𝛼 (𝑎, 𝑏)⟩(𝑓𝑎 ; ⟨𝑏+.𝛼 (𝑎, 𝑏)⟩(𝑓𝑏 ; 𝑒))) []

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

Full Proofs for “Logarithm and Program Testing” 64:9

⟨Ξ𝑝 .𝜏⟩(𝜙 ; 𝑒)

Multi-variable functoriality with functions 𝜙 (𝑏) : 𝜎1 (𝑏) → 𝜎2 (𝑏)
and type 𝜏 with respect to type variables Ξ of polarity 𝑝 .

⟨Ξ+ .𝑏⟩(𝜙 ; 𝑒) ≔ 𝜙 (𝑏) (𝑒) (𝑏 ∈ Ξ)
⟨Ξ𝑝 .𝑏⟩(𝜙 ; 𝑒) ≔ 𝑒 (𝑏 ∉ Ξ)
⟨Ξ𝑝 .0⟩(𝜙 ; 𝑒) ≔ 𝑒

⟨Ξ𝑝 .𝜏left + 𝜏right⟩(𝜙 ; 𝑒) ≔ case(𝑒;𝑥 .inl(⟨Ξ𝑝 .𝜏left⟩(𝜙 ;𝑥));𝑦.inr(⟨Ξ𝑝 .𝜏right⟩(𝜙 ;𝑦)))
⟨Ξ𝑝 .1⟩(𝜙 ; 𝑒) ≔ 𝑒

⟨Ξ𝑝 .𝜏fst × 𝜏snd⟩(𝜙 ; 𝑒) ≔ ⟨⟨Ξ𝑝 .𝜏fst⟩(𝜙 ; fst(𝑒)); ⟨Ξ𝑝 .𝜏snd⟩(𝜙 ; snd(𝑒))⟩
⟨Ξ+.𝜏dom → 𝜏cod⟩(𝜙 ; 𝑒) ≔ _(𝑥 :𝜎2 (𝜏dom)).⟨Ξ+ .𝜏cod⟩(𝜙 ; 𝑒 (⟨Ξ−.𝜏dom⟩(𝜙 ;𝑥)))
⟨Ξ− .𝜏dom → 𝜏cod⟩(𝜙 ; 𝑒) ≔ _(𝑥 :𝜎1 (𝜏dom)).⟨Ξ− .𝜏cod⟩(𝜙 ; 𝑒 (⟨Ξ+.𝜏dom⟩(𝜙 ;𝑥)))

⟨Ξ+ .`𝑏.𝜏⟩(𝜙 ; 𝑒) ≔ fold
`𝑏.𝜎2 (𝜏)
𝑏.𝜎1 (𝜏) (𝑒;𝑥 .roll𝑏.𝜎2 (𝜏) (⟨Ξ+.𝜏⟩(𝜙 ;𝑥)))

⟨Ξ− .`𝑏.𝜏⟩(𝜙 ; 𝑒) ≔ fold
`𝑏.𝜎1 (𝜏)
𝑏.𝜎2 (𝜏) (𝑒;𝑥 .roll𝑏.𝜎1 (𝜏) (⟨Ξ− .𝜏⟩(𝜙 ;𝑥)))

Fig. 4. Functoriality with respect to multiple variables

Proof. By simultaneous induction on the type expression 𝛼 (𝑎, 𝑏) for both positive and negative
polarities. (The lemma only states the results for the positive polarity, but its proof needs both
polarities due to domains of function types being contravariant.) □

7.1 Generalization with Multiple Variables
Because inductive types can be nested, we also have to generalize the original definition of func-
toriality to deal with multiple variables. The generalized functoriality is defined in Figure 4. To
reduce cluttering, Lemmas 7.1 and 7.2 and their natural extensions to multi-variable functoriality
(where functions on the same variable compose and those on different variables fuse) are often
used implicitly in the rest of this paper.

7.2 Connections to Logical Relations
When a function is used as an admissible relation for some type variable 𝑎 in logical relations at a
type 𝜏 where 𝑎 ∈+ 𝜏 , functoriality coincides with those logical relations. That is, the logical relation
itself becomes a function that matches the functorial action.

Lemma 7.3. Given two closed types 𝜏dom and 𝜏cod, a function ·; · ⊢ 𝑓 : 𝜏dom → 𝜏cod, a distinguished
type variable 𝑎, a type 𝜏 such that 𝑎 ⊢ 𝜏 where 𝑎 ∈+ 𝜏 , an element ·; · ⊢ 𝑒 : 𝜏 [𝜏dom/𝑎], we have

𝑒 ∼𝜏 ⟨𝑎+.𝜏⟩(𝑓 ; 𝑒) [𝑎 ↦→ 𝑓]
Proof. This is the “forwarding” case clause of a special case of more general Lemma 7.4 below

with Ξ = ∅ (that is, no bound variables introduced by inductive types). □

Lemma 7.4. Given these data:
• Closed types 𝜏dom and 𝜏cod.
• A function ·; · ⊢ 𝑓 : 𝜏dom → 𝜏cod.
• A kinding context Ξ intended to be the set of type variables introduced by inductive types.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

64:10 Kuen-Bang Hou (Favonia) and Zhuyang Wang

• A type substitution 𝑎 ⊢ b : Ξ.
For convenience, we define two type substitutions 𝜎dom and 𝜎cod as follows:

𝜎dom ≔ b [𝜏dom/𝑎], 𝑎 ↦→ 𝜏dom

𝜎cod ≔ b [𝜏cod/𝑎], 𝑎 ↦→ 𝜏cod

• A type 𝜏 such that Ξ, 𝑎 ⊢ 𝜏 and Ξ ∈++ 𝜏 .
• A family of admissible relations [: 𝜎dom ↔ 𝜎cod indexed by Ξ.

The following two statements holds:
Positive, moving forward: If 𝑎 ∈+ 𝜏 , then for any family of “forward” functions 𝐹 indexed by

Ξ such that ·; · ⊢ 𝐹𝑏 : 𝜎dom (𝑏) → 𝜎cod (𝑏), and any ·; · ⊢ 𝑒 : 𝜎dom (𝜏) such that 𝑒 ∼𝜏 𝑒 [\] and
where \ : 𝜎dom ↔ 𝜎dom is a family of admissible relations defined as

(1) \𝑎 is contextual equivalence at 𝜏dom for the distinguished type variable 𝑎; and
(2) \𝑏 (𝑒, 𝑒 ′) if and only if 𝑒 � 𝑒 ′ and [𝑏 (𝑒, 𝐹𝑏 (𝑒)) for any type variable 𝑏 ∈ Ξ
we have the relation

𝑒 ∼𝜏 ⟨𝑎+.𝜏⟩(𝑓 ; ⟨Ξ+ .𝜏⟩(𝐹 ; 𝑒)) [𝑎 ↦→ 𝑓 , []
Negative, moving backward: If 𝑎 ∈− 𝜏 , then for any family of “backward” functions𝐺 indexed

by Ξ such that ·; · ⊢ 𝐺𝑏 : 𝜎cod (𝑏) → 𝜎dom (𝑏), and any ·; · ⊢ 𝑒 : 𝜎cod (𝜏) such that 𝑒 ∼𝜏 𝑒 [\]
where \ : 𝜎cod ↔ 𝜎cod is a family of admissible relations defined as

(1) \𝑎 is contextual equivalence at 𝜏cod for the distinguished type variable 𝑎; and
(2) \𝑏 (𝑒, 𝑒 ′) if and only if 𝑒 � 𝑒 ′ and [𝑏 (𝐺𝑏 (𝑒), 𝑒) for any type variable 𝑏 ∈ Ξ
we have the relation

⟨𝑎− .𝜏⟩(𝑓 ; ⟨Ξ+ .𝜏⟩(𝐺 ; 𝑒)) ∼𝜏 𝑒 [𝑎 ↦→ 𝑓 , []

Proof. By induction on 𝜏 .
• 𝜏 = 0 or 𝜏 = 1.
Trivial by parametricity.

• 𝜏 = 𝑎 (the distinguished type variable).
Since 𝑎 ∈+ 𝑎, we only need to prove that for any ·; · ⊢ 𝑒 : 𝜏1,

𝑒 ∼𝑎 ⟨𝑎+.𝑎⟩(𝑓 ; 𝑒) [𝑎 ↦→ 𝑓 , []
which is obvious from the definition of functoriality.

• 𝜏 = 𝑏 ∈ Ξ (bound variables introduced by inductive types).
If 𝑎 ∈+ 𝑏, we need to prove that for any ·; · ⊢ 𝑒 : 𝜎dom (𝑏) such that 𝑒 ∼𝑏 𝑒 [\],

𝑒 ∼𝑏 ⟨Ξ+.𝑏⟩(𝐹 ; 𝑒) [𝑎 ↦→ 𝑓 , []
which is equivalent to prove that [𝑏 (𝑒, 𝐹𝑏 (𝑒)). From 𝑒 ∼𝑏 𝑒 [\] we know \𝑏 (𝑒, 𝑒), which by
definition is exactly [𝑏 (𝑒, 𝐹𝑏 (𝑒)). The case where 𝑎 ∈− 𝑏 is similar.

• 𝜏 = 𝜏1 × 𝜏2 or 𝜏 = 𝜏1 + 𝜏2.
By definition and inductive hypotheses.

• 𝜏 = 𝜏1 → 𝜏2.
We first consider the case where 𝑎 ∈+ 𝜏 . Given ·; · ⊢ 𝑒 : 𝜎dom (𝜏) such that 𝑒 ∼𝜏 𝑒 [\], by
definition of the logical relation, in order to prove that

𝑒 ∼𝜏 ⟨𝑎+.𝜏⟩(𝑓 ; ⟨Ξ+ .𝜏⟩(𝐹 ; 𝑒)) [𝑎 ↦→ 𝑓 , []
it suffices to prove that for any 𝑒 ′1 ∼𝜏1 𝑒

′
2 [𝑎 ↦→ 𝑓 , [],

𝑒 (𝑒 ′1) ∼𝜏2 ⟨𝑎+.𝜏⟩(𝑓 ; ⟨Ξ+.𝜏⟩(𝐹 ; 𝑒)) (𝑒 ′2) [𝑎 ↦→ 𝑓 , []

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

Full Proofs for “Logarithm and Program Testing” 64:11

which can be simplified to the following by evaluation:

𝑒 (𝑒 ′1) ∼𝜏2 ⟨𝑎+.𝜏2⟩(𝑓 ; ⟨Ξ+.𝜏2⟩(𝐹 ; 𝑒 (⟨Ξ− .𝜏1⟩(𝐹 ; ⟨𝑎− .𝜏1⟩(𝑓 ; 𝑒 ′2))))) [𝑎 ↦→ 𝑓 , []

Because Ξ ∈++ 𝜏1 → 𝜏2, which means Ξ ∉ 𝜏1 and ⟨Ξ− .𝜏1⟩(𝐹 ;−) is a no-op, we have

⟨Ξ− .𝜏1⟩(𝐹 ; ⟨𝑎− .𝜏1⟩(𝑓 ; 𝑒 ′2)) = ⟨𝑎− .𝜏1⟩(𝑓 ; 𝑒 ′2)

By the inductive hypothesis on 𝜏1, we have

⟨𝑎− .𝜏1⟩(𝑓 ; 𝑒 ′2) ∼𝜏1 𝑒
′
2 [𝑎 ↦→ 𝑓]

But we also know 𝑒 ′1 ∼𝜏1 𝑒
′
2 [𝑎 ↦→ 𝑓]. Therefore

⟨𝑎− .𝜏1⟩(𝑓 ; 𝑒 ′2) � 𝑒 ′1

Hence it suffices to prove that

𝑒 (𝑒 ′1) ∼𝜏2 ⟨𝑎+.𝜏2⟩(𝑓 ; ⟨Ξ+.𝜏2⟩(𝐹 ; 𝑒 (𝑒 ′1))) [𝐹, 𝑎 ↦→ 𝑓]

This follows the inductive hypothesis on 𝜏2 as long as we can show that 𝑒 (𝑒 ′1) ∼𝜏2 𝑒 (𝑒 ′1) [\].
We know 𝑒 ∼𝜏1→𝜏2 𝑒 [\], and since Ξ ∉ 𝜏1, it is trivial that 𝑒 ′1 ∼𝜏1 𝑒

′
1 [\], and thus the condition

𝑒 (𝑒 ′1) ∼𝜏2 𝑒 (𝑒 ′1) [\] holds.
The case where 𝑎 ∈− 𝜏 is similar.

• 𝜏 = `𝑏.𝜏1 where Ξ, 𝑎, 𝑏 ⊢ 𝜏1 and 𝑏 ∈++ 𝜏1.
Positive/forward We start with the case where 𝑎 ∈+ 𝜏 . Let R : 𝜎dom (𝜏) ↔ 𝜎dom (𝜏) be an

admissible relation defined as follows:

R(𝑒, 𝑒 ′) ≔ 𝑒 � 𝑒 ′ and 𝑒 ∼𝜏 ⟨𝑎+ .𝜏⟩(𝑓 ; ⟨Ξ+.𝜏⟩(𝐹 ; 𝑒)) [𝑎 ↦→ 𝑓 , []

The goal is to prove R(𝑒, 𝑒) under the assumption that 𝑒 ∼𝜏 𝑒 [\]. Let

𝜎cod/dom ≔ b [𝜏cod/𝑎], 𝑎 ↦→ 𝜏dom

𝐹+𝜏 ≔ _(𝑥 :𝜎dom (𝜏)) .⟨Ξ+.𝜏⟩(𝐹 ;𝑥)
𝑓 +𝜏 ≔ _(𝑥 :𝜎cod/dom (𝜏)).⟨𝑎+ .𝜏⟩(𝑓 ;𝑥)
𝑓𝑏 ≔ 𝑓 +𝜏 ◦ 𝐹+𝜏
Ξ′ ≔ Ξ, 𝑏

b ′ ≔ b, 𝑏 ↦→ 𝜏

𝜎 ′
dom ≔ b ′[𝜏dom/𝑎], 𝑎 ↦→ 𝜏dom

𝐹 ′ ≔ 𝐹, 𝑏 ↦→ 𝑓𝑏

[′ ≔ [, 𝑏 ↦→ − ∼𝜏 − [𝑎 ↦→ 𝑓 , []
\ ′ ≔ \, 𝑏 ↦→ R

Unfolding the definition of 𝑒 ∼`𝑏.𝜏1 𝑒 [\], it suffices to show thatR is a prefixed point respect
to `𝑏.𝜏1 and \ . That is, to prove R(𝑒, 𝑒), it suffices to prove that for any ·; · ⊢ 𝑒 ′1 : 𝜎 ′

dom (𝜏1)
and ·; · ⊢ 𝑒 ′2 : 𝜎 ′

dom (𝜏1) such that 𝑒 ′1 ∼𝜏1 𝑒
′
2 [\, 𝑏 ↦→ R], wa can show

R(roll𝑏.𝜎dom (𝜏1) (𝑒 ′1), roll𝑏.𝜎dom (𝜏1) (𝑒 ′2))

Because R is an admissible subrelation of contextual equivalence, without loss of generality
we may assume 𝑒 ′1 = 𝑒 ′2 = 𝑒 ′. By the definition of R, the above goal is equivalent to

roll𝑏.𝜎dom (𝜏1) (𝑒 ′) ∼𝜏 𝑓 +𝜏 (𝐹+𝜏 (roll𝑏.𝜎dom (𝜏1) (𝑒 ′))) [𝑎 ↦→ 𝑓 , []

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

64:12 Kuen-Bang Hou (Favonia) and Zhuyang Wang

We can evaluate its right-hand side as follows:
𝑓 +𝜏 (𝐹+𝜏 (roll𝑏.𝜎dom (𝜏1) (𝑒 ′)))
� 𝑓 +𝜏 (⟨Ξ+.𝜏⟩(𝐹 ; roll𝑏.𝜎dom (𝜏1) (𝑒 ′)))

� 𝑓 +𝜏 (fold`𝑏.𝜎cod/dom (𝜏1)
𝑏.𝜎dom (𝜏1) (roll𝑏.𝜎dom (𝜏1) (𝑒 ′);𝑥 .roll𝑏.𝜎cod/dom (𝜏1) (⟨Ξ+.𝜏1⟩(𝐹 ;𝑥))))

� 𝑓 +𝜏 (roll𝑏.𝜎cod/dom (𝜏1) (⟨Ξ+.𝜏1⟩(𝐹 ; ⟨𝑏+.𝜏1⟩(𝐹+𝜏 ; 𝑒 ′))))
� ⟨𝑎+ .𝜏⟩(𝑓 ; ⟨Ξ+.𝜏⟩(𝐹 ; roll𝑏.𝜎dom (𝜏1) (𝑒 ′)))

� fold
`𝑏.𝜎cod (𝜏1)
𝑏.𝜎cod/dom (𝜏1) (roll𝑏.𝜎cod/dom (𝜏1) (

⟨Ξ+.𝜏1⟩(𝐹 ; ⟨𝑏+.𝜏1⟩(𝐹+𝜏 ; 𝑒 ′)));𝑥 .roll𝑏.𝜎cod (𝜏1) (⟨𝑎+.𝜏1⟩(𝑓 ;𝑥)))
� roll𝑏.𝜎cod (𝜏1) (⟨𝑎+.𝜏1⟩(𝑓 ; ⟨𝑏+.𝜏1⟩(𝑓 +𝜏 ; ⟨Ξ+.𝜏1⟩(𝐹 ; ⟨𝑏+.𝜏1⟩(𝐹+𝜏 ; 𝑒 ′)))))
� roll𝑏.𝜎cod (𝜏1) (⟨𝑎+.𝜏1⟩(𝑓 ; ⟨Ξ′+ .𝜏1⟩(𝐹 ′; 𝑒 ′)))

Therefore it is equivalent to prove that
roll𝑏.𝜎dom (𝜏1) (𝑒 ′) ∼𝜏 roll𝑏.𝜎cod (𝜏1) (⟨𝑎+.𝜏1⟩(𝑓 ; ⟨Ξ′+.𝜏1⟩(𝐹 ′; 𝑒 ′))) [𝑎 ↦→ 𝑓 , []

By the definition of the logical relation, it suffices to prove that
𝑒 ′ ∼𝜏1 ⟨𝑎+.𝜏1⟩(𝑓 ; ⟨Ξ′+ .𝜏1⟩(𝐹 ′; 𝑒 ′)) [𝑎 ↦→ 𝑓 , [′]

This follows the inductive hypothesis on 𝜏1 with \ = \ ′ if we can verify that \ ′
𝑏
(𝑒, 𝑒 ′) if and

only if 𝑒 � 𝑒 ′ and [′
𝑏
(𝑒, 𝐹 ′

𝑏
(𝑒)), which holds by definition because \ ′

𝑏
= R.

Negative/backward Now consider the situation where 𝑎 ∈− 𝜏 . Let R : 𝜎cod (𝜏) ↔ 𝜎cod (𝜏) be
an admissible relation defined as follows:

R(𝑒, 𝑒 ′) ≔ 𝑒 � 𝑒 ′ and ⟨𝑎− .𝜏⟩(𝑓 ; ⟨Ξ+.𝜏⟩(𝐺 ; 𝑒)) ∼𝜏 𝑒 [𝑎 ↦→ 𝑓 , []
The goal is to prove R(𝑒, 𝑒) under the assumption that 𝑒 ∼𝜏 𝑒 [\]. Let

𝜎dom/cod ≔ [b [𝜏dom/𝑎], 𝑎 ↦→ 𝜏cod]
𝐺+
𝜏 ≔ _(𝑥 :𝜎cod (𝜏)) .⟨Ξ+.𝜏⟩(𝐺 ;𝑥)

𝑓 −𝜏 ≔ _(𝑥 :𝜎dom/cod (𝜏)) .⟨𝑎− .𝜏⟩(𝑓 ;𝑥)
𝑔𝑏 ≔ 𝑓 −𝜏 ◦𝐺+

𝜏

Ξ′ ≔ Ξ, 𝑏

b ′ ≔ b, 𝑏 ↦→ 𝜏

𝜎 ′
cod ≔ b ′[𝜏cod/𝑎], 𝑎 ↦→ 𝜏cod

𝐺 ′ ≔ 𝐺,𝑏 ↦→ 𝑔𝑏

[′ ≔ [, 𝑏 ↦→ − ∼𝜏 − [𝑎 ↦→ 𝑓 , []
\ ′ ≔ \, 𝑏 ↦→ R

Unfolding the definition of 𝑒 ∼`𝑏.𝜏1 𝑒 [\], it suffices to show thatR is a prefixed point respect
to `𝑏.𝜏1 and \ . That is, to prove R(𝑒, 𝑒), it suffices to prove that for any ·; · ⊢ 𝑒 ′1 : 𝜎 ′

cod (𝜏1)
and ·; · ⊢ 𝑒 ′2 : 𝜎 ′

cod (𝜏1) such that 𝑒 ′1 ∼𝜏1 𝑒
′
2 [\, 𝑏 ↦→ R], we can show

R(roll𝑏.𝜎cod (𝜏1) (𝑒1), roll𝑏.𝜎cod (𝜏1) (𝑒2))
Because R is an admissible subrelation of contextual equivalence, without loss of generality
we may assume 𝑒 ′1 = 𝑒 ′2 = 𝑒 ′. By the definition of R, it is equivalent to

𝑓 −𝜏 (𝐺+
𝜏 (roll𝑏.𝜎cod (𝜏1) (𝑒 ′))) ∼𝜏 roll𝑏.𝜎cod (𝜏1) (𝑒 ′) [𝑎 ↦→ 𝑓 , []

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

Full Proofs for “Logarithm and Program Testing” 64:13

We can evaluate its left-hand side as follows:
𝑓 −𝜏 (𝐺+

𝜏 (roll𝑏.𝜎cod (𝜏1) (𝑒 ′)))
� 𝑓 −𝜏 (roll𝑏.𝜎dom/cod (𝜏1) (⟨Ξ

+.𝜏1⟩(𝐺 ; ⟨𝑏+.𝜏1⟩(𝐺+
𝜏 ; 𝑒 ′))))

� roll𝑏.𝜎dom (𝜏1) (⟨𝑎− .𝜏1⟩(𝑓 ; ⟨𝑏+.𝜏1⟩(𝑓 −𝜏 ; ⟨Ξ+ .𝜏1⟩(𝐺 ; ⟨𝑏+.𝜏1⟩(𝐺+
𝜏 ; 𝑒 ′)))))

� roll𝑏.𝜎dom (𝜏1) (⟨𝑎− .𝜏1⟩(𝑓 ; ⟨Ξ′+.𝜏1⟩(𝐺 ′; 𝑒 ′)))
Therefore it is equivalent to prove that

roll𝑏.𝜎dom (𝜏1) (⟨𝑎− .𝜏1⟩(𝑓 ; ⟨Ξ′+ .𝜏1⟩(𝐺 ′; 𝑒 ′))) ∼𝜏 roll𝑏.𝜎cod (𝜏1) (𝑒 ′) [𝑎 ↦→ 𝑓 , []
By definition of the logical relation, it suffices to prove that

⟨𝑎− .𝜏1⟩(𝑓 ; ⟨Ξ′+.𝜏1⟩(𝐺 ′; 𝑒 ′)) ∼𝜏1 𝑥 [𝑎 ↦→ 𝑓 , [′]
This follows the inductive hypothesis on 𝜏1 with \ = \ ′ if we can verify that \ ′

𝑏
(𝑒, 𝑒) if and

only if 𝑒 � 𝑒 ′ and [′
𝑏
(𝐺 ′

𝑏
(𝑒), 𝑒), which holds by definition because \ ′

𝑏
= R.

□

8 FUNCTIONAL LOGICAL RELATIONS
Here are a few more lemmas used in the proofs of Theorem 3.1 and Lemma 3.2.

Lemma 8.1. Given a type Δ ⊢ 𝜏 where Δ ∈+ 𝜏 , a family of relations [: 𝛿1 ↔ 𝛿2 where each relation
[𝑎 is a function, the relation − ∼𝜏 − [[] must be a function.

Proof. By Lemma 8.2 with Ξ = ∅. □

Lemma 8.2. Given a type Δ,Ξ ⊢ 𝜏 where Ξ ∈++ 𝜏 , a family of relations [: 𝛿1 ↔ 𝛿2 where each
relation [𝑎 is a function, a family of relations [1 : 𝜎1 ↔ 𝜎2,

• If Δ ∈+ 𝜏 , then for any 𝑒 such that 𝑒 ∼𝛿1 (𝜏) 𝑒 [\], there must be a unique term 𝑒 ′ such that
𝑒 ∼𝜏 𝑒

′ [[, [1]. Here \ : 𝜎1 ↔ 𝜎1 is a family of relations indexed by Ξ such that \𝑏 (𝑒, 𝑒 ′) if and
only if 𝑒 � 𝑒 ′ and there exists a unique 𝑒 ′′ such that [1 (𝑒, 𝑒 ′′),

• If Δ ∈− 𝜏 , then for any 𝑒 such that 𝑒 ∼𝛿2 (𝜏) 𝑒 [\], there must be a unique term 𝑒 ′ such that
𝑒 ′ ∼𝜏 𝑒 [[, [1]. Here \ : 𝜎2 ↔ 𝜎2 is a family of relations indexed by Ξ such that \𝑏 (𝑒, 𝑒 ′) if and
only if 𝑒 � 𝑒 ′ and there exists a unique 𝑒 ′′ such that [1 (𝑒 ′′, 𝑒),

Proof. By induction on 𝜏 .
• 𝜏 = 0 or 𝜏 = 1.
Trivial.

• 𝜏 = 𝑎 ∈ Δ.
We know 𝑎 ∈+ 𝑎. Then by the definition of logical relations, it suffices to prove that there is a
unique 𝑒 ′ such that [𝑎 (𝑒, 𝑒 ′), which follows directly by the assumption that [𝑎 is a function.

• 𝜏 = 𝑏 ∈ Ξ.
By assumption we know 𝑒 ∼𝛿1 (𝑏) 𝑒 [\], which means \𝑏 (𝑒, 𝑒). By definition of \ , we know
there is a unique 𝑒 ′ such that [1 (𝑒, 𝑒 ′), which is equivalent to 𝑒 ∼𝜏 𝑒

′ [[, [1].
• 𝜏 = 𝜏1 × 𝜏2.
We first consider the case where Δ ∈+ 𝜏 . Because 𝑒 ∼𝛿1 (𝜏) 𝑒 [\], we know fst(𝑒) ∼𝛿1 (𝜏1)
fst(𝑒) [\]. By inductive hypotheses on 𝜏1 we know there must be a unique term 𝑒1 such that
fst(𝑒) ∼𝜏1 𝑒1 [[, [1]. Similarly there exists a unique term 𝑒2 such that snd(𝑒) ∼𝜏2 𝑒2 [[, [1].
Then by the definition of logical relations, we get

⟨fst(𝑒); snd(𝑒)⟩ ∼𝜏1×𝜏2 ⟨𝑒1; 𝑒2⟩ [[, [1]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

64:14 Kuen-Bang Hou (Favonia) and Zhuyang Wang

which means 𝑒 ∼𝜏 ⟨𝑒1; 𝑒2⟩ [[, [1] because 𝑒 � ⟨fst(𝑒); snd(𝑒)⟩. Thus we proved there exists
𝑒 ′ = ⟨fst(𝑒); snd(𝑒)⟩.
Now suppose there is another term 𝑒 ′′ such that 𝑒 ∼𝜏 𝑒 ′′ [[, [1], and we will show that
𝑒 ′′ � 𝑒 ′. Then by the definition of logical relations, we have fst(𝑒) ∼𝜏1 fst(𝑒 ′′) [[, [1].
Because of the uniqueness of 𝑒1, we must have 𝑒1 � fst(𝑒 ′′). Similarly we have 𝑒2 � snd(𝑒 ′′).
Therefore 𝑒 ′ � ⟨𝑒1; 𝑒2⟩.
The case where Δ ∈− 𝜏 is similar.

• 𝜏 = 𝜏1 + 𝜏2.
We first consider the case where Δ ∈+ 𝜏 . When 𝑒 � inl(𝑒1), then by inductive hypothesis on
𝜏1, we know there is a unique 𝑒 ′1 such that 𝑒1 ∼𝜏1 𝑒

′
1 [[, [1]. Thus we have 𝑒 ′ = inl(𝑒 ′1) such

that 𝑒 ∼𝜏 𝑒
′ [[, [1]. The uniqueness of 𝑒 ′ comes from the uniqueness of 𝑒 ′1. Similarly when

𝑒 � inr(𝑒1), there also exists a unique 𝑒 ′ such that 𝑒 ∼𝜏 𝑒
′ [[, [1].

• 𝜏 = 𝜏1 → 𝜏2.
If Δ ∈+ 𝜏 , we first rename 𝑒 into 𝑓 to indicate it is a function. Because Δ ∈+ 𝜏 and Ξ ∈++ 𝜏 ,
we know Δ ∈− 𝜏1 and Ξ ∉ 𝜏 . So we know for any term 𝑒1 of type 𝛿2 (𝜏1) it always holds that
𝑒1 ∼𝛿1 (𝜏1) 𝑒1 [\]. And then by inductive hypothesis on 𝜏1, there is a unique 𝑒 ′1 such that
𝑒 ′1 ∼𝜏1 𝑒1 [[, [1]. This means there is a function 𝑓1 such that 𝑒 ′1 = 𝑓1 (𝑒1).
By inductive hypothesis on 𝜏2 we know there is a unique 𝑒2 such that 𝑓 (𝑒 ′1) ∼𝜏2 𝑒2 [[, [′],
which means there is a function 𝑓2 such that 𝑒2 = 𝑓2 (𝑓 (𝑒 ′1)) = 𝑓2 (𝑓 (𝑓1 (𝑒1))). Hence we have
𝑓 ∼𝜏 𝑓2 ◦ 𝑓 ◦ 𝑓1 [[], i.e., for any 𝑓 there exists 𝑓 ′ = 𝑓2 ◦ 𝑓 ◦ 𝑓1 such that 𝑓 ∼𝜏 𝑓 ′ [[].
Now to prove 𝑓 ′ is unique, suppose there is another term 𝑓 ′′ such that 𝑓 ∼𝜏 𝑓 ′′ [[] and we
will show that 𝑓 ′′ � 𝑓 ′. It suffices to prove that 𝑓 ′′(𝑒1) � 𝑓2 (𝑓 (𝑓1 (𝑒1))) for any 𝑒1 of type
𝛿2 (𝜏1). By definition of 𝑓1 we have 𝑓1 (𝑒1) ∼𝜏1 𝑒1 [[]. Thus 𝑓 (𝑓1 (𝑒1)) ∼𝜏2 𝑓

′′(𝑒1) [[]. Then by
definition of 𝑓2 we know 𝑓 ′′(𝑒1) � 𝑓 ′(𝑒1).
The case where Δ ∈− 𝜏 is similar.

• 𝜏 = `𝑏.𝜏1.
If Δ ∈+ 𝜏 , first define a relation R as R(𝑒, 𝑒 ′) iff 𝑒 � 𝑒 ′ and there exists a unique term 𝑒 ′′

satisfying 𝑒 ∼𝜏 𝑒 ′′ [[, [1]. Because 𝑒 ∼𝛿1 (𝜏) 𝑒 [\], by the definition of logical relations, to
prove R(𝑒, 𝑒), it suffices to prove that R is a prefixed point: for any 𝑒1 ∼𝛿1 (𝜏1) 𝑒1 [\, 𝑏 ↦→ R],
we always have R(roll𝑏.𝛿1 (𝜏1) (𝑒1), roll𝑏.𝛿1 (𝜏1) (𝑒1)). By the definition of R, it is equivalent
to prove that there is a unique term 𝑒 ′′ satisfying roll𝑏.𝛿1 (𝜏1) (𝑒1) ∼𝜏 𝑒

′′ [[, [1]. Now let

\ ′ ≔ \, 𝑏 ↦→ R
[′1 ≔ [,𝑏 ↦→ − ∼𝜏 − [[, [1]

Because 𝑒1 ∼𝛿1 (𝜏1) 𝑒1 [\ ′], by the inductive hypothesis on 𝜏1, we know the relation − ∼𝜏1
− [[, [′1] is a function, and let’s call it 𝑓 . Then we have an 𝑒 ′′ = roll𝑏.𝛿2 (𝜏1) (𝑓 (𝑒1)). And by
the definition of logical relations, it holds that roll𝑏.𝛿1 (𝜏1) (𝑒1) ∼𝜏 𝑒

′′ [[, [1].
Now we show that 𝑒 ′′ is unique. Suppose there is another 𝑒 ′′ satisfying roll𝑏.𝛿1 (𝜏1) (𝑒1) ∼𝜏

𝑒 ′′ [[, [1], there must be a term 𝑒 ′′1 such that 𝑒 ′′ � roll𝑏.𝛿2 (𝜏1) (𝑒 ′′1). By the definition of
logical relations, we have 𝑒1 ∼𝜏1 𝑒

′′
1 [[, [′1]. Then by the definition of 𝑓 and the fact that 𝑓 is

a function, we know 𝑒 ′′1 � 𝑓 (𝑒1). Therefore 𝑒 ′′ � 𝑒 ′′.
The case where Δ ∈− 𝜏 is similar.

□

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

Full Proofs for “Logarithm and Program Testing” 64:15

9 PROOF OF LEMMA 3.2
This section is devoted to proving Lemma 3.2, the pinnacle of our technical development. The lemma
is necessarily vastly generalized to Lemma 9.1 to account for bound type variables introduced by
inductive types. We should first describe the reduction:

Proof of Lemma 3.2 from Lemma 9.1. By parametricity on polymorphic types1 we know
𝑓 ∼𝛿 (∀𝑎.𝛼 (𝑎)→𝐻 (𝑎)) 𝑓 []

By choosing 𝑠 as the admissible relation for the type variable 𝑎, it suffices to prove that
𝑒∗ ∼𝛿 (𝛼 (𝑎)) 𝑒 [𝑎 ↦→ 𝑠]

Then we can apply Lemma 9.1 with
Ξ ≔ ∅
Ξ′ ≔ ∅
𝑎∗ ≔ `𝑎. log𝑎 (𝛼 (𝑎))
] ≔ roll𝑎.𝛿 (log𝑎 (𝛼 (𝑎)))

𝑠 ≔ 𝑠

where all the conditions are satisifed; in particular,
(1) 𝑒 ∼𝛿 (𝛼 (𝜏)) 𝑒 [] by parametricity; and
(2)] (as roll𝑎.−) is injective; and
(3) for any 𝑡 such that ·; · ⊢ 𝑡 : 𝛿 (log𝑎 (𝛼 (𝑎)) [𝛿 (𝑎∗)/𝑎]),

𝑠 (] (𝑡)) � 𝛿{𝛼 (𝑎) @𝑎 [𝑎 ↦→ 𝜏]; ∅}(𝑒; 𝑒; ⟨𝑎+.𝛿 (log𝑎 (𝛼 (𝑎)))⟩(𝑠; 𝑡))
by the definitions of 𝑠 and] and the 𝛽-rule of recursive types.

The definition of 𝑠 is reproduced here for the convenience of readers:
_(𝑥 :𝛿 (𝑎∗)) .fold𝜏

𝑎.𝛿 (log𝑎 (𝛼 (𝑎)))
(𝑥 ;𝑦.𝛿{𝛼 (𝑎) @𝑎 [𝑎 ↦→ 𝜏]; ∅}(𝑒; 𝑒;𝑦))

□

Lemma 9.1. Suppose we have the following data:
• Distinct type variables:
– An ambient kinding context Δ.
– A type substitution 𝛿 such that · ⊢ 𝛿 : Δ, applied to all open types in the theorem.
– The distinguished type variable 𝑎.
– A kinding context Ξ intended to be the set of type variables introduced by inductive types.
– Another kinding context Ξ′ intended to be the logarithm representatives of Ξ.
– A one-to-one function𝜓 from Ξ to Ξ′.𝜓 is intended to send a type variable in Ξ to its logarithm
representative in Ξ′.

• Some types and type substitutions:
(1) 𝛼 (𝑎) such that Δ, 𝑎,Ξ ⊢ 𝛼 (𝑎) and 𝑎 ∈+ log𝜓𝑎 (𝛼 (𝑎))
(2) Δ ⊢ 𝑎∗, intended to be the type of indexes in Lemma 3.2.
(3) · ⊢ 𝜏 , intended to be the type of general 𝑎-elements we wish to relate to.
(4) Δ, 𝑎 ⊢ b : Ξ, intended to be the type of the parts associated with variables introduced by

inductive types.
1This parametricity is different from the one given in Section 2 which only applies to rank-0 types. Instead, the parametricity
here is the same as the logical relation for the standard System F without the prenex restriction. We use a different version
here to handle the universal quantifiers, and for rank-0 types it collides with the parametricity given in Section 2.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

64:16 Kuen-Bang Hou (Favonia) and Zhuyang Wang

(5) Δ ⊢ b− : Ξ intended to be the type of the skeletons associated with variables introduced by
inductive types.

(6) Δ, 𝑎,Ξ ⊢ 𝜌 : Ξ′ intended to be the type of logarithm of the recursive parts.
For convenience, 𝜎 is defined to be [b [𝑎∗/𝑎], 𝑎 ↦→ 𝑎∗] and 𝜍 to be [b [𝜏/𝑎], 𝑎 ↦→ 𝜏].

• An element ·; · ⊢ 𝑒 : 𝜏 showing that 𝜏 is not empty.
• An element ·; · ⊢ 𝑒 : 𝛿 (𝜍 (𝛼 (𝑎))) intended to be the general input.
• A family of functions Skeletonize𝑏:Ξ where ·; · ⊢ Skeletonize𝑏 : 𝛿 (𝜍 (𝑏) → b− (𝑏))
• A family of functions Refill𝑏:Ξ where ·; · ⊢ Refill𝑏 : 𝛿 (b− (𝑏) → 𝜎

𝜓 ;𝜌
𝑎 (𝑏))

• A family of functions Select𝑏:Ξ where ·; · ⊢ Select𝑏 : 𝛿 (𝜍 (𝑏) → ¥𝜍𝜓 ;𝜌
𝑎 (𝑏))

• A function ·; · ⊢] : 𝛿 (𝜎 (𝜌 (log𝜓𝑎 (𝛼 (𝑎))))) → 𝛿 (𝑎∗) where] is injective.
• A global selection function ·; · ⊢ 𝑠 : 𝛿 (𝑎∗) → 𝜏 such that for any ·; · ⊢ 𝑡 : 𝛿 (𝜎 (𝜌 (log𝜓𝑎 (𝛼 (𝑎))))),

𝑠 (] (𝑡)) � 𝛿{𝛼 (𝑎) @𝜓
𝑎 𝜍 ; 𝜌}(𝑒; ⟨Ξ+.𝛿 (𝛼 (𝜏))⟩(Select; 𝑒); ⟨𝑎+.𝛿 (b (𝜌 (log𝜓𝑎 (𝛼 (𝑎)))))⟩(𝑠; 𝑡))

• A family of relations [: 𝛿 (b [𝑎∗/𝑎]) ↔ 𝛿 (b [𝜏/𝑎])
• 𝑒 ∼𝛿 (𝛼 (𝜏)) 𝑒 [\] where \ : 𝛿 (b [𝜏/𝑎]) ↔ 𝛿 (b [𝜏/𝑎]) are defined as follows: \𝑏 (𝑒, 𝑒 ′) if and only
if 𝑒 � 𝑒 ′ and [𝑏 (Refill𝑏 (Skeletonize𝑏 (𝑒)) (]), 𝑒) holds for any 𝑏 ∈ Ξ, for any ·; · ⊢ 𝑒 : 𝛿 (𝜍 (𝑏)),
and for any injective ·; · ⊢] : 𝛿 (𝜎 (𝜌 (𝜓 (𝑏)))) → 𝛿 (𝑎∗) satisfying the condition that for any
·; · ⊢ 𝑡 : 𝛿 (𝜎 (𝜌 (𝜓 (𝑏)))), we have 𝑠 (] (𝑡)) � Select𝑏 (𝑒) (⟨𝑎+.𝛿 (b (𝜌 (𝜓 (𝑏))))⟩(𝑠; 𝑡)).2

Define ·; · ⊢ 𝑒− : 𝛿 (b− (𝛼− (𝑎∗))) and ·; · ⊢ 𝑒∗ : 𝛿 (𝜎 (𝛼 (𝑎))) to be
𝑒− ≔ 𝛿{𝛼 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b−}(𝑠; ⟨Ξ+.𝛿 (𝛼 (𝜏))⟩(Skeletonize; 𝑒))

𝑒∗ ≔ 𝛿{𝛼 (𝑎) ↑𝜓𝑎 𝜎 ; 𝜌}(]; ⟨Ξ+ .𝛿 (𝛼− (𝑎∗))⟩(Refill; 𝑒−))
We have

𝑒∗ ∼𝛿 (𝛼 (𝑎)) 𝑒 [[, 𝑎 ↦→ 𝑠]

Proof. Prove by induction on the type structure of 𝛼 (𝑎).
• 𝛼 (𝑎) = 𝑎.
By evaluation we get 𝑒− = ★ and 𝑒∗ =] (★). Then by the definition of the logical relation, it
suffices to prove that 𝑠 (] (★)) � 𝑒 .
Let 𝑡 be ★ in the assumption of 𝑠 , we get

𝑠 (] (★)) � 𝛿{𝑎 @𝜓
𝑎 𝜍 ; 𝜌}(𝑒; ⟨Ξ+.𝑎⟩(Select; 𝑒); ⟨𝑎+.𝛿 (b (𝜌 (log𝜓𝑎 (𝑎))))⟩(𝑠;★))

But the right-hand side is equal to 𝑒 by definition. Thus we proved 𝑠 (] (★)) � 𝑒 .
• 𝛼 (𝑎) = 𝑏 ∈ Ξ.
By definition we know

𝑒− = 𝛿{𝑏 ↓Ξ𝑎 𝑎∗;𝜏 ; b}(𝑠; ⟨Ξ+ .𝑏⟩(Skeletonize; 𝑒))
= Skeletonize𝑏 (𝑒)

and then
𝑒∗ = 𝛿{𝑏 ↑𝜓𝑎 𝜎 ; 𝜌}(]; ⟨Ξ+ .𝑏⟩(Refill; 𝑒−))

= ⟨Ξ+.𝑏⟩(Refill; 𝑒−) (])
= Refill𝑏 (𝑒−) (])
= Refill𝑏 (Skeletonize𝑏 (𝑒)) (])

2This convoluted condition is essentially saying that, when 𝛼 (𝑎) = 𝑏 ∈ Ξ, the theorem is automatically true. It is in a sense
self-recursive and is needed for inductive types. It is perhaps easier to check how this condition is used in the case where
𝛼 (𝑎) = 𝑏 ∈ Ξ instead of attempting to understand it as a standalone statement.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

Full Proofs for “Logarithm and Program Testing” 64:17

We want to prove
𝑒∗ ∼𝑏 𝑒 [[, 𝑎 ↦→ 𝑠]

By the definition of the logical relation, it suffices to prove that

[𝑏 (Refill𝑏 (Skeletonize𝑏 (𝑒)) (]), 𝑒)

By the assumption that 𝑒 ∼𝑏 𝑒 [\] we get \𝑏 (𝑒, 𝑒), which leads to our goal above if we can
show that for any ·; · ⊢ 𝑡 : 𝛿 (𝜎 (𝜌 (𝜓 (𝑏)))),

𝑠 (] (𝑡)) � Select𝑏 (𝑒) (⟨𝑎+.𝛿 (b (𝜌 (𝜓 (𝑏))))⟩(𝑠; 𝑡))

But from the assumption about 𝑠 we know

𝑠 (] (𝑡)) � 𝛿{𝑏 @𝜓
𝑎 𝜍 ; 𝜌}(𝑒; ⟨Ξ+.𝑏⟩(Select; 𝑒); ⟨𝑎+.𝛿 (b (𝜌 (𝜓 (𝑏))))⟩(𝑠; 𝑡))

We can see they are equivalent by simplifying the right-hand side.
• 𝛼 (𝑎) = 𝑏 ∈ Δ.
By definition 𝑒∗ = 𝑒 , so the result follows by parametricity.

• 𝛼 (𝑎) = 1 or 𝛼 (𝑎) = 0.
The logical relation holds trivially by definition.

• 𝛼 (𝑎) = 𝛼1 (𝑎) × 𝛼2 (𝑎).
By definition we get 𝑒− = ⟨𝑒−1 ; 𝑒−2 ⟩ and 𝑒∗ = ⟨𝑒∗1 ; 𝑒∗2⟩ where

𝑒−1 ≔ 𝛿{𝛼1 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b−}(𝑠; ⟨Ξ+.𝛿 (𝛼1 (𝜏))⟩(Skeletonize; fst(𝑒)))
𝑒−2 ≔ 𝛿{𝛼2 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b−}(𝑠; ⟨Ξ+.𝛿 (𝛼2 (𝜏))⟩(Skeletonize; snd(𝑒)))

𝑒∗1 ≔ 𝛿{𝛼1 (𝑎) ↑𝜓𝑎 𝜎 ; 𝜌}(] ◦ inl; ⟨Ξ+ .𝛿 (𝛼−
1 (𝑎∗))⟩(Refill; 𝑒−1))

𝑒∗2 ≔ 𝛿{𝛼2 (𝑎) ↑𝜓𝑎 𝜎 ; 𝜌}(] ◦ inr; ⟨Ξ+ .𝛿 (𝛼−
2 (𝑎∗))⟩(Refill; 𝑒−2))

We want to prove
𝑒∗ ∼𝛿 (𝛼1 (𝑎)×𝛼2 (𝑎)) 𝑒 [[, 𝑎 ↦→ 𝑠]

By the definition of the logical relation, it suffices to prove that

𝑒∗1 ∼𝛿 (𝛼1 (𝑎)) fst(𝑒) [[, 𝑎 ↦→ 𝑠]
𝑒∗2 ∼𝛿 (𝛼2 (𝑎)) snd(𝑒) [[, 𝑎 ↦→ 𝑠]

Now we use the inductive hypothesis on 𝛼1 (𝑎) (then on 𝛼2 (𝑎), similarly) by instantiating
𝛼 (𝑎) by 𝛼1 (𝑎), 𝑒 by fst(𝑒), and] by] ◦ inl.
The condition fst(𝑒) ∼𝛿 (𝛼1 (𝜏)) fst(𝑒) [\] can be proved by 𝑒 ∼𝛿 (𝛼1 (𝜏)×𝛼2 (𝜏)) 𝑒 [\] and the
definition of the logical relation. The function] ◦ inl is injective because] and inl are both
injective. Now we only need to prove that for any ·; · ⊢ 𝑡1 : 𝛿 (𝜎 (𝜌 (log𝜓𝑎 (𝛼1 (𝑎))))),

𝑠 ((] ◦ inl) (𝑡1)) � 𝛿{𝛼1 (𝑎) @𝜓
𝑎 𝜍 ; 𝜌}(𝑒;⟨Ξ+.𝛿 (𝛼1 (𝜏))⟩(Select; fst(𝑒));

⟨𝑎+.𝛿 (b (𝜌 (log𝜓𝑎 (𝛼1 (𝑎)))))⟩(𝑠; 𝑡1))

By assumption we know that for any ·; · ⊢ 𝑡 : 𝛿 (𝜎 (𝜌 (log𝜓𝑎 (𝛼 (𝑎))))),

𝑠 (] (𝑡)) � 𝛿{𝛼 (𝑎) @𝜓
𝑎 𝜍 ; 𝜌}(𝑒;⟨Ξ+.𝛿 (𝛼 (𝜏))⟩(Select; 𝑒);

⟨𝑎+.𝛿 (b (𝜌 (log𝜓𝑎 (𝛼 (𝑎)))))⟩(𝑠; 𝑡))

Let 𝑡 be inl(𝑡1) and then it can be proved by definition.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

64:18 Kuen-Bang Hou (Favonia) and Zhuyang Wang

• 𝛼 (𝑎) = 𝛼1 (𝑎) + 𝛼2 (𝑎).
We consider two cases where 𝑒 � inl(𝑒1) and 𝑒 � inr(𝑒2).
If 𝑒 � inl(𝑒1), then by definition we have 𝑒− = inl(𝑒−1) and 𝑒∗ = inl(𝑒∗1).

𝑒−1 ≔ 𝛿{𝛼1 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b−}(𝑠; ⟨Ξ+.𝛿 (𝛼1 (𝜏))⟩(Skeletonize; 𝑒1))

𝑒∗1 ≔ 𝛿{𝛼1 (𝑎) ↑𝜓𝑎 𝜎 ; 𝜌}(] ◦ inl; ⟨Ξ+.𝛿 (𝛼−
1 (𝑎∗))⟩(Refill; 𝑒−1))

So it is equivalent to prove

inl(𝑒∗1) ∼𝛿 (𝛼1 (𝑎)+𝛼2 (𝑎)) inl(𝑒1) [[, 𝑎 ↦→ 𝑠]

By the definition of the logical relation, it suffices to prove that

𝑒∗1 ∼𝛿 (𝛼1 (𝑎)) 𝑒1 [[, 𝑎 ↦→ 𝑠]

Now we can use the inductive hypothesis on 𝛼1 (𝑎) by instantiating 𝛼 (𝑎) by 𝛼1 (𝑎), 𝑒 by 𝑒1,
and] by] ◦ inl. The condition 𝑒1 ∼𝛿 (𝛼1 (𝜏)) 𝑒1 [\] can be proved by 𝑒 ∼𝛿 (𝛼1 (𝜏)+𝛼2 (𝜏)) 𝑒 [\] and
the definition of the logical relation. The function] ◦ inl is injective because] and inl are
both injective. Now we only need to prove that for any ·; · ⊢ 𝑡1 : 𝛿 (𝜎 (𝜌 (log𝜓𝑎 (𝛼1 (𝑎))))),

𝑠 ((] ◦ inl) (𝑡1)) � 𝛿{𝛼1 (𝑎) @𝜓
𝑎 𝜍 ; 𝜌}(𝑒;⟨Ξ+.𝛿 (𝛼1 (𝜏))⟩(Select; 𝑒1);

⟨𝑎+.𝛿 (b (𝜌 (log𝜓𝑎 (𝛼1 (𝑎)))))⟩(𝑠; 𝑡1))

By assumption we know that for any ·; · ⊢ 𝑡 : 𝛿 (𝜎 (𝜌 (log𝜓𝑎 (𝛼 (𝑎))))),

𝑠 (] (𝑡)) � 𝛿{𝛼 (𝑎) @𝜓
𝑎 𝜍 ; 𝜌}(𝑒;⟨Ξ+.𝛿 (𝛼 (𝜏))⟩(Select; 𝑒);

⟨𝑎+.𝛿 (b (𝜌 (log𝜓𝑎 (𝛼 (𝑎)))))⟩(𝑠; 𝑡))

Let 𝑡 be inl(𝑡1) and then it can be proved by definition.
• 𝛼 (𝑎) = 𝛼1 (𝑎) → 𝛼2 (𝑎).
By the definition of the logical relation, it is equivalent to prove that for any · ⊢ 𝑒1 :
𝛿 (𝜎 (𝛼1 (𝑎))) and · ⊢ 𝑒 ′1 : 𝛿 (𝜍 (𝛼1 (𝑎))), if 𝑒1 ∼𝛿 (𝛼1 (𝑎)) 𝑒

′
1 [[, 𝑎 ↦→ 𝑠], then

𝑒∗ (𝑒1) ∼𝛿 (𝛼2 (𝑎)) 𝑒 (𝑒 ′1) [[, 𝑎 ↦→ 𝑠]

Because Ξ ∈++ 𝛼 (𝑎), we know Ξ ∉ 𝛼1 (𝑎). Thus 𝑒1 ∼𝛿 (𝛼1 (𝑎)) 𝑒
′
1 [[, 𝑎 ↦→ 𝑠] is equivalent to

𝑒1 ∼𝛿 (𝛼1 (𝑎)) 𝑒
′
1 [𝑎 ↦→ 𝑠]. By Lemma 7.3 we know

𝑒1 ∼𝛿 (𝛼1 (𝑎)) ⟨𝑎+.𝛿 (𝛼1 (𝑎))⟩(𝑠; 𝑒1) [𝑎 ↦→ 𝑠]

And then by Lemma 8.1 we can prove that ⟨𝑎+ .𝛿 (𝛼1 (𝑎))⟩(𝑠; 𝑒1) � 𝑒 ′1.
By definition we have

𝑒− = 𝛿{𝛼 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b−}(𝑠; ⟨Ξ+.𝛿 (𝛼 (𝜏))⟩(Skeletonize; 𝑒))
= 𝛿{𝛼 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b−}(𝑠; _(𝑥 :𝛿 (𝛼1 (𝜏))).⟨Ξ+.𝛿 (𝛼2 (𝜏))⟩(Skeletonize; 𝑒 (𝑥)))
= _(𝑥 :𝛿 (𝛼1 (𝑎∗))) .𝛿{𝛼2 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b−}(𝑠; ⟨Ξ+.𝛿 (𝛼2 (𝜏))⟩(Skeletonize; 𝑒 (⟨𝑎+.𝛿 (𝛼1 (𝑎))⟩(𝑠;𝑥))))

𝑒∗ = 𝛿{𝛼 (𝑎) ↑𝜓𝑎 𝜎 ; 𝜌}(]; ⟨Ξ+.𝛿 (𝛼− (𝑎∗))⟩(Refill; 𝑒−))

= 𝛿{𝛼 (𝑎) ↑𝜓𝑎 𝜎 ; 𝜌}(]; _(𝑥 :𝛿 (𝛼1 (𝑎∗))) .⟨Ξ+.𝛿 (𝛼−
2 (𝑎∗))⟩(Refill; 𝑒− (𝑥)))

= _(𝑥 :𝛿 (𝛼1 (𝑎∗))) .𝛿{𝛼2 (𝑎) ↑𝜓𝑎 𝜎 ; 𝜌}(] ◦ _(𝑦:𝛿 (𝜎 (𝜌 (log𝜓𝑎 (𝛼2 (𝑎)))))).⟨𝑥 ;𝑦⟩;
⟨Ξ+.𝛿 (𝛼−

2 (𝑎∗))⟩(Refill; 𝑒− (𝑥)))

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

Full Proofs for “Logarithm and Program Testing” 64:19

Since ⟨𝑎+.𝛿 (𝛼1 (𝑎))⟩(𝑠; 𝑒1) � 𝑒 ′1, we now have 𝑒∗ (𝑒1) = 𝑒∗2 where

𝑒∗2 ≔ 𝛿{𝛼2 (𝑎) ↑𝜓𝑎 𝜎 ; 𝜌}(] ′; ⟨Ξ+ .𝛿 (𝛼−
2 (𝑎∗))⟩(Refill; 𝑒−2))

𝑒−2 ≔ 𝛿{𝛼2 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b−}(𝑠; ⟨Ξ+ .𝛿 (𝛼2 (𝜏))⟩(Skeletonize; 𝑒 (𝑒 ′1)))

] ′ ≔] ◦ _(𝑦:𝛿 (𝜎 (𝜌 (log𝜓𝑎 (𝛼2 (𝑎)))))).⟨𝑒1;𝑦⟩
Now we can use the inductive hypothesis on 𝛼2 (𝑎) by instantiating 𝛼 (𝑎) by 𝛼2 (𝑎), 𝑒 by 𝑒 (𝑒 ′1),
and] by] ′. The condition 𝑒 (𝑒 ′1) ∼𝛿 (𝛼2 (𝜏)) 𝑒 (𝑒 ′1) [\] can be proved by the definition of the
logical relation, because 𝑒 ∼𝛿 (𝛼1 (𝜏)→𝛼2 (𝜏)) 𝑒 [\] and 𝑒 ′1 ∼𝛿 (𝛼1 (𝜏)) 𝑒 ′1 []. The function] ′ is
injective because] and _𝑦.⟨𝑒1;𝑦⟩ are both injective. Now we only need to prove that for any
·; · ⊢ 𝑡2 : 𝛿 (𝜎 (𝜌 (log𝜓𝑎 (𝛼2 (𝑎))))),

𝑠 (] ′(𝑡2)) � 𝛿{𝛼2 (𝑎) @𝜓
𝑎 𝜍 ; 𝜌}(𝑒;⟨Ξ+.𝛿 (𝛼2 (𝜏))⟩(Select; 𝑒 (𝑒 ′1));

⟨𝑎+.𝛿 (b (𝜌 (log𝜓𝑎 (𝛼2 (𝑎)))))⟩(𝑠; 𝑡2))

By assumption we know that for any ·; · ⊢ 𝑡 : 𝛿 (𝜎 (𝜌 (log𝜓𝑎 (𝛼 (𝑎))))),

𝑠 (] (𝑡)) � 𝛿{𝛼 (𝑎) @𝜓
𝑎 𝜍 ; 𝜌}(𝑒;⟨Ξ+.𝛿 (𝛼 (𝜏))⟩(Select; 𝑒);

⟨𝑎+.𝛿 (b (𝜌 (log𝜓𝑎 (𝛼 (𝑎)))))⟩(𝑠; 𝑡))
Let 𝑡 be ⟨𝑒1; 𝑡2⟩ and then it can be proved by definition.

• Case 𝛼 (𝑎) = `𝑏.𝛼1 (𝑎): Let the new types and type substitutions be:
Ξ̂ ≔ Ξ, 𝑏

Ξ̂′ ≔ Ξ′, 𝑏 ′

𝜓 ≔ 𝜓,𝑏 ↦→ 𝑏 ′

b̂ ≔ b, 𝑏 ↦→ b (`𝑏.𝛼1 (𝑎))
b̂− ≔ b−, 𝑏 ↦→ b− (`𝑏.𝛼−

1 (𝜏))

𝜌 ≔ 𝜌,𝑏 ′ ↦→ 𝜌 (log𝜓𝑎 (`𝑏.𝛼1 (𝑎)))
And define some functions and families of functions:

𝑔1 ≔ _(𝑥 :`𝑏.𝛿 (𝜍 (𝛼1 (𝜏)))).⟨Ξ+.`𝑏.𝛿 (𝛼1 (𝜏))⟩(Skeletonize;𝑥)
𝑔2 ≔ _(𝑥 :`𝑏.𝛿 (b− (𝛼1 (𝜏)))).𝛿{`𝑏.𝛼1 (𝑎) ↓Ξ𝑎 𝑎∗;𝜏 ; b−}(𝑠;𝑥)
𝑔3 ≔ _(𝑥 :`𝑏.𝛿 (b− (𝛼−

1 (𝑎∗)))).⟨Ξ+.`𝑏.𝛿 (𝛼−
1 (𝑎∗))⟩(Refill;𝑥)

𝑔4 ≔ _𝑥._].𝛿{`𝑏.𝛼1 (𝑎) ↑𝜓𝑎 𝜎 ; 𝜌}(];𝑥)

sel ≔ _𝑒._𝑡 .𝛿{`𝑏.𝛼1 (𝑎) @𝜓
𝑎 𝜍 ; 𝜌}(𝑒; ⟨Ξ+ .`𝑏.𝛿 (𝛼 (𝜏))⟩(Select; 𝑒); 𝑡)

Skeletonize′ ≔ Skeletonize, 𝑏 ↦→ 𝑔2 ◦ 𝑔1
Refill′ ≔ Refill, 𝑏 ↦→ 𝑔4 ◦ 𝑔3
Select′ ≔ Select, 𝑏 ↦→ sel

The goal is to prove
Refill′

𝑏
(Skeletonize′

𝑏
(𝑒)) (]) ∼`𝑏.𝛿 (𝛼1 (𝑎)) 𝑒 [[, 𝑎 ↦→ 𝑠]

Let R be a relation such that R(𝑥, 𝑥) iff
Refill′

𝑏
(Skeletonize′

𝑏
(𝑥)) (]) ∼`𝑏.𝛿 (𝛼1 (𝑎)) 𝑥 [[, 𝑎 ↦→ 𝑠]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

64:20 Kuen-Bang Hou (Favonia) and Zhuyang Wang

holds for any ·; · ⊢] : 𝛿 (𝜌 (𝑏 ′)) → 𝛿 (𝑎∗), where] satisfies that for any ·; · ⊢ 𝑡 : 𝛿 (�̂� (𝜌 (𝑏 ′))),
𝑠 (] (𝑡)) � Select′

𝑏
(𝑥) (⟨𝑎+.𝛿 (b̂ (𝜌 (𝑏 ′)))⟩(𝑠; 𝑡))

By assumption we know that 𝑒 ∼`𝑏.𝛿 (𝛼1 (𝑎)) 𝑒 [\]. Then to prove R(𝑒, 𝑒), by the definition of
the logical relation of the inductive type, it suffices to prove that for any 𝑒1 such that

𝑒1 ∼𝛿 (𝛼1 (𝑎)) 𝑒1 [\, 𝑏 ↦→ R]
it always holds thatR(roll𝑏.𝛿 (𝜍 (𝛼1 (𝑎))) (𝑒1), roll𝑏.𝛿 (𝜍 (𝛼1 (𝑎))) (𝑒1)), i.e., for any ·; · ⊢] : 𝛿 (𝜌 (𝑏 ′)) →
𝛿 (𝑎∗) satisfying that for any ·; · ⊢ 𝑡 : 𝛿 (�̂� (𝜌 (𝑏 ′))),

𝑠 (] (𝑡)) � Select′
𝑏
(roll𝑏.𝛿 (𝜍 (𝛼1 (𝑎))) (𝑒1)) (⟨𝑎+.𝛿 (b̂ (𝜌 (𝑏 ′)))⟩(𝑠; 𝑡))

we need to prove
Refill′

𝑏
(Skeletonize′

𝑏
(roll𝑏.𝛿 (𝜍 (𝛼1 (𝑎))) (𝑒1))) (]) ∼`𝑏.𝛿 (𝛼1 (𝑎)) roll𝑏.𝛿 (𝜍 (𝛼1 (𝑎))) (𝑒1) [[, 𝑎 ↦→ 𝑠]

By evaluating the left hand side, it is equivalent to prove
roll𝑏.𝛿 (𝜎 (𝛼1 (𝑎))) (𝑒∗1) ∼`𝑏.𝛿 (𝛼1 (𝑎)) roll𝑏.𝛿 (𝜍 (𝛼1 (𝑎))) (𝑒1) [[, 𝑎 ↦→ 𝑠]

where

𝑒∗1 ≔ 𝛿{𝛼1 (𝑎) ↑𝜓𝑎 �̂� ; 𝜌}(] ′; ⟨Ξ̂+.𝛿 (𝛼−
1 (𝑎))⟩(Refill′; 𝑒−1))

𝑒−1 ≔ 𝛿{𝛼1 (𝑎) ↓Ξ̂𝑎 𝑎∗;𝜏 ; b̂−}(𝑠; ⟨Ξ̂+ .𝛿 (𝛼1 (𝜏))⟩(Skeletonize′; 𝑒1))
] ′ ≔] ◦ roll

𝑏′.𝛿 (�̂� (𝜌 (log𝜓𝑎 (𝛼1 (𝑎)))))

Then by definition of the logical relation, it is equivalent to
𝑒∗1 ∼𝛿 (𝛼1 (𝑎)) 𝑒1 [[, 𝑎 ↦→ 𝑠, 𝑏 ↦→ − ∼`𝑏.𝛿 (𝛼1 (𝑎)) − [[, 𝑎 ↦→ 𝑠]]

Let
[̂ ≔ [, 𝑏 ↦→ − ∼`𝑏.𝛿 (𝛼1 (𝑎)) − [[, 𝑎 ↦→ 𝑠]
\̂ ≔ \, 𝑏 ↦→ R

Then we can use the inductive hypothesis on 𝛼1 (𝑎). Let 𝑎, 𝜏 , 𝑎∗, 𝑒 , 𝑠 be the same. Let Ξ, Ξ′,
𝜓 , b , b−, 𝜌 , Refill, Skeletonize, Select, \ , [,] be the corresponding hatted versions. Let 𝑒 be
𝑒1. To instantiate the inductive hypothesis, we need to show that \̂𝑏 (which is R) matches
its definition in the assumption. This can be verified by the definition of R. We also need to
show that for any ·; · ⊢ 𝑡1 : 𝛿 (�̂� (𝜌 (log𝜓𝑎 (𝛼1 (𝑎))))),

𝑠 (] ′(𝑡1)) � 𝛿{𝛼1 (𝑎) @𝜓
𝑎 𝜍 ; 𝜌}(𝑒; ⟨Ξ̂+ .𝛿 (𝛼1 (𝜏))⟩(Select′; 𝑒1); ⟨𝑎+.𝛿 (b̂ (𝜌 (log𝜓𝑎 (𝛼1 (𝑎)))))⟩(𝑠; 𝑡1))

But we have the assumption that for any ·; · ⊢ 𝑡 : 𝛿 (�̂� (𝜌 (𝑏 ′))),
𝑠 (] (𝑡)) � Select′

𝑏
(roll𝑏.𝛿 (𝜍 (𝛼1 (𝑎))) (𝑒1)) (⟨𝑎+.𝛿 (b̂ (𝜌 (𝑏 ′)))⟩(𝑠; 𝑡))

Let 𝑡 be roll
𝑏′.𝛿 (�̂� (𝜌 (log𝜓𝑎 (𝛼1 (𝑎)))))

(𝑡1). Then the equivalence can be proved by unfolding the
definitions.

□

REFERENCES
Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 2 (1955), 285 – 309.

https://doi.org/10.2140/pjm.1955.5.285

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 64. Publication date: January 2022.

https://doi.org/10.2140/pjm.1955.5.285

	Abstract
	1 A Variant of Lemma 3.2 From the Main Article
	2 Logical Relations, Fixed Points, and Prefixed Points
	3 Main Theorem Statement
	4 Skeletonization
	5 Selection Functions
	6 Decidable Emptiness
	7 Polarities and Functoriality
	7.1 Generalization with Multiple Variables
	7.2 Connections to Logical Relations

	8 Functional Logical Relations
	9 Proof of Lemma 3.2
	References

